Biomedical Imaging

Screening Mammogram Classification with Prior Exams

Radiologists typically compare a patient's most recent breast cancer screening exam to their previous ones in making informed diagnoses. To reflect this practice, we propose new neural network models that compare pairs of screening mammograms from …

Globally-Aware Multiple Instance Classifier for Breast Cancer Screening

Deep learning models designed for visual classification tasks on natural images have become prevalent in medical image analysis. However, medical images differ from typical natural images in many ways, such as significantly higher resolutions and …

Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening

We present a deep convolutional neural network for breast cancer screening exam classification, trained and evaluated on over 200,000 exams (over 1,000,000 images). Our network achieves an AUC of 0.895 in predicting whether there is a cancer in the …

Maggnus - Yale Hack Health 2018

Visualization of ultrasound classifier The challenge was to interpret the performance of inception v1 network on their ultrasound images gathered from using Butterfly hand-held ultrasound devices. We utilized a simple method of erasing parts of images, feeding them to the classifier, observing the class probability of the correct class. White means higher value of class probability, meaning the model was more sure of its prediction when that particular region was removed.